
PRACTICUM MODULE
COMPUTATIONAL PHYSICS

By:
Dr. Warsono, M.Si

PHYSICS STUDY PROGRAM
PHYSICS EDUCATION DEPARTMENT

FACULTY OF MATHEMATICS AND NATURAL SCIENCES,
YOGYAKARTA STATE UNIVERSITY

2020

FOREWORD

Praise be to Allah swt who has given his grace and guidance so that we can complete
the preparation of this Computational Physics Practicum Manual. As is known, Physics is one
of the branches of science that plays a central role in understanding the behavior of the
universe. With advances in technology and computing, the discipline has evolved rapidly,
allowing scientists to explore physical phenomena with a level of detail never before imagined.
This practicum module is designed to help you understand, master, and apply computational
techniques in the context of physics.

The use of computing in physics not only broadens our insight into the universe, but
also has profound applications in areas such as materials science, astronomy, nuclear physics,
fluid dynamics, and more. In this module, you will learn how computers can be powerful tools
for analyzing experimental data, simulating complicated physical phenomena, and solving
differential equations that describe physical systems.

The module consists of a number of labs designed with clear steps, as well as real case
examples. By following this module, you will acquire computational skills that you can apply
in your own physics research and experiments.

We would like to thank all those who have contributed to the preparation of this
module. Happy learning, and may this Computational Physics practicum module help you
understand, appreciate, and delve into the fascinating world of computational physics.

Greetings,

Dr. Warsono

Computational Physics Practicum
Module

1

∑

(
x

CHAPTER
I NUMERICAL
DIFFERENTIATION

1.1. Destination

After attending this lecture, students are expected to have the ability to solve physical
problems related to numerical differentiation through the steps of preparing numerical
formulations, preparing algorithms, preparing flow charts and making computer programs.

1.2. Numerical Differentiation Formula

Solving physics problems often involves complicated and complex functions that are

difficult or even impossible to find their differential values analytically (exact). In addition,

experimental data is often not easily solved analytically. Numerical differentiation is one of

the alternative methods to solve these problems. There are several ways to obtain

numerical differential formulations, including the development (expansion) of the Tylor and

Lagrange series. Tylor's formulation for the expansion of the function f(x± h) is expressed

by the following series:

f(x ± h) = f(x) ± hf' (x) + 1 h2 f'' (x) ± 1 h3 f''' (x) + (1.1)
2 6

The development of the function f(x) into the Lagrange formulation is expressed by:
nn (x - x j)

f(x) = f(xi)∏ (1.2)
i=0 j=0 (xi - x j)

j≠i
where "Π" denotes "product of". For example for n = 1 and n = 2

the solution of f(x) is :

➢ For n = 1
1 1 (xx j) (x x1) (x x0)

f(x) = ∑ f(xi)∏ x)
= f (x0) (x

x)
+ f(x1) (xx) (1.3)

i=0

➢ For n = 2

j=0 i j
j≠i

0 1 1 0

2 2 (x- x j) (x- x1)(x- x2) (x- x0)(x- x2)
f(x) = ∑ f(xi)∏ = f(x0) + f(x1)

i=0 j=0 (xi - x j
)

j≠i

(x0 - x1)(x0 - x2) (x1 - x0)(x1 - x2)

Computational Physics Practicum
Module

2

+ f (x2) (x- x0)(x- x1) (x2
- x0)(x2 - x1)

(1.4)

Computational Physics Practicum
Module

3

f

The development of the Tylor series to obtain numerical differential formulas is

done by manipulating the coefficients of the series terms then followed by addition or

subtraction operations to obtain the desired formulation. The following is an example of

deriving a 3-point Differential-Centered (DP3) formula

with Tylor series:

f(x + h) = f(x) + hf
'(x) +

h2

2!
''(x) +

h3

3!
f (
3)

(x) +

f (x - h) = f (x) - hf' (x) +
h2

' (x) -
h3

+
f (3) (x)

2! 3!

f (x + h) - f (x - h) = 2hf ' (x)
+

2h2

3! f (3

)
(x) + (1.5)

Rearranging equation (1.5) obtained equation :

f ' (x) = f(x + h) - f (x - h) - h f (3) (x) - (1.6)
2h 3!

The first derivative approximation formula based on equation (1.6) is:

f' (x) = f(x + h) - f(x - h)
2h

with truncation error term =
 h f (3)(x) -
3!

(1.7)

Center-differential means that the abscissa value for which the derivative will be sought is at the
center or

in the center (see Figure 1).

f(x)

f(x+h)

f(x)

f(x-h)
The point for

which the
derivative value

is sought

x
x-h x x+h

Figure 1. 3-point center-differential

The derivation of numerical differential formulas through the Lagrange expansion method

f

Computational Physics Practicum
Module

4

is done by directly deriving equation (1.2) according to the order of the derivative.

Expansion

Computational Physics Practicum
Module

5

a. First Differential

f(x) =' f(x + h) - f(x - h)

2h

f(x - 2h) - 8 f(x - h) + 8 f(x + h) - f(x + 2h)

12h

Differential Center 3 Point
(DP3)

f(x) ='
Differential Center 5 Point
(DP5)

f(x) =' 3 f(x) - 4 f(x - h) + f(x - 2h)

2h
- 3 f(x) + 4 f(x + h) - f(x + 2h)

2h

3-Point Backward Differential (DB3)

f(x) =' Differential Forward3Point (DD3)

b. Higher-order
differential

f(x) ='' - f(x-2h)+16 f(x-h)-30 f(x)+16 f (x+h)- f(x+2h)

12h 2
Differential Center 5 Points
(DP5)

f(x) ='' f(x + h) - 2 f(x) + f(x - h)

h 2
Differential Center 3 Points
(DP3)

f(x) ='' - f(x -2h)+16 f(x -h)-30 f(x)+16 f(x +h)- f(x +2h)
12h2

- f(x + 3h) + 4 f(x + 2h) - 5 f(x + h) + 2 f(x) h
2

Differential Center 5 Points
(DP5)

f(x) =''

f'' (x) = 2f(x) - 5f(x - h) + 4f(x - 2h) - f(x -
3h)

h2

f (x) =

f (x) =

f (x) =

f (x) =

f (x) =

f (x) =

Lagrange is usually used to derive forward or backward differential formulas.

Table 1 shows the numerical differential formulas for order one to order four obtained by the

development of Tylor series and Lagrange series.

Table 1. Numerical differential formula

(3) - f(x + 3h) + 8 f(x + 2h) - 13 f(x + h) + 13 f(x - h) - 8 f(x - 2h) + f(x - 3h)
8h3

(3) - 5 f(x) + 18 f(x + h) - 24 f(x + 2h) + 14 f(x + 3h) - 3(x + 4h)

2h 3

(3) 5 f(x) - 18 f(x - h) + 24 f(x - 2h) - 14 f(x - 3h) + 3(x - 4h)

2h 3

(4) - f(x + 3h) + 12 f(x + 2h) - 39 f(x + h) + 56 f(x) - 39 f(x - h) + 12 f(x - 2h) - f(x - 3h)

6h 4

(4) 3 f(x) - 14 f(x + h) + 26 f(x + 2h) - 24 f(x + 3h) + 11 f(x + 4h) - 2f(x + 5h) h
4

(4) 3 f(x) - 14 f(x - h) + 26 f(x - 2h) - 24 f(x - 3h) + 11 f(x - 4h) - 2f(x - 5h) h
4

Computational Physics Practicum
Module

6

to = 0; ta = 10; h = 0.01

t = to : h : ta

Create Graphs:
xt vs t; v vs t and a vs t

FINAL

1.3. Case Example

 Case 1:
A lightly damped oscillatory motion has the equation of motion :

x(t) = 5e-0 ,5t cos(4πt)

with x(t) the deviation in cm and t the time in seconds. Determine the speed and

acceleration of the oscillator every 0.01 second increment from 0 to 10 seconds. Express

the results as graphs of v(t) vs t and a(t) vs t. Also graph the deviation as a function of time

on one screen. Use the 5-point center differential method (DP5).

Solution:
⮚ Numerical formulation:

Deviation 🡪 x(t) = f(x) ; Velocity 🡪 v(t) = f'(x) ; Acceleration 🡪 a(t) = f’’ (x)

x(t - 2h) - 8x(t - h) + 8x(t + h) - x(t - 2h)
v(t) =

a(t) =

12h
- x(t - 2h) + 16x(t - h) - 30x(t) + 16x(t + h) - x(t - 2h)

12h2

⮚ Algorithm:
a. define the function x(t) with the inline command

b. give the value of start time to = 0, end time ta = 10 and time increment h = 0.01

c. give time range value t = to : h : ta

d. for values t = to : h : ta calculate: v(t), a(t) and x(t)

e. display the values of t, v(t), a(t) and x(t) in column matrix form

f. graph the relationship between x(t) vs t, v(t) vs t and a(t) vs t in one screen with the

subplot command.

⮚ Flowchart:
START

Show
[t' v' a' xt']

For t = to : h : ta calculate:
v, a and xt

Define the
function
x

Computational Physics Practicum
Module

7

⮚ Listing Program:
x=inline('5*exp(-0.5*t).*cos(2*pi*t)','t');
t0=0;
ta=10;
h=0.01;
t=t0:h:ta;
v=(x(t-2*h)-8*x(t-h)+8*x(t+h)-x(t+2*h))./(12*h);
a=(-x(t-2*h)+16*x(t-h)-30*x(t)+16*x(t+h)-x(t+2*h))./(12*h.^2);
xt=x(t);
[t' xt' v' a']
subplot(1,3,1),plot(t,xt,'b')
xlabel('t(sec)')
ylabel('x(cm)')
grid on
subplot(1,3,2),plot(t,v,'r')
xlabel('t(sec)')
ylabel('v(cm/sec)')
grid on
subplot(1,3,3),plot(t,a,'k')
xlabel('t(seconds)')
ylabel('a(cm/det2)')
grid on

⮚ Program Outputs

5 30

4

20

3

2 10

1

0

0

-1 -10

-2

-20

-3

200

150

100

50

0

-50

-100

-150

-4
0 2 4 6 8 10

t(seconds)

-30
0 2 4 6 8 10

t(seconds)

-200
0 2 4 6 8 10

t(seconds)

x
 (
cm

)

v

(c
m

/s
ec

)

a

(c
m

/s
e
c2

)

Computational Physics Practicum
Module

8

Case 2:
Data on the relationship between time t and position x of a moving object is expressed in

the following table:

n(data) t (seconds) x(t) in meters

1 0 0
2 0.1 0.4975
3 0.2 0.9806
4 0.3 1.4367
5 0.4 1.8570
6 0.5 2.2361
7 0.6 2.5725
8 0.7 2.8673
9 0.8 3.1235

10 0.9 3.3448
11 1.0 3.5355

Find the velocity and acceleration of the object at time t = 0, 0.10, 0.20, ...1.00 sec.

Solution:
⮚ Numerical formulation:

Position 🡪 x(t) = f(x) ; Velocity 🡪 v(t) = f'(x) ; Acceleration 🡪 a(t) = f’’ (x)

This case cannot be solved with center-differential, forward-differential and backward-

differential formulas alone, but can be solved with a combination of forward and

backward-differential formulas.

For the velocity solution, formulas DD3 and DB3 are used. DD3 formula to determine

the velocity value from t=0 to t=0.8 and DB3 formula to determine the velocity from

t=0.9 to t=1.0.

v(t) =

v(t) =

- 3 x(t) + 4 x(t + h) - x(t + 2h)

2h
3 x(t) - 4 x(t - h) + x(t - 2h)

2h

→ DD3 for t = 0 to t = 0.8

→ DB3 for t = 1.0 to t = 0.9

The acceleration solution uses formula DD4 for t = 0 to t = 0.7 and formula DB4 for t =

0.8 to t = 1.0. The formulation is as follows:

- x(t + 3h) + 4 x(t + 2h) - 5 x(t + h) + 2 x(t)
a(t) = 2

h

a(t) = 2x(t) - 5x(t - h) + 4x(t - 2h) - x(t - 3h)
h2

→ DD40 ≤ t ≤ 0.7

→ DB40 .8 ≤ t ≤ 1.0

Computational Physics Practicum
Module

9

for n=1:9

for n=10:11

for n=1:8

1

Calculate:
a(n)

Calculat
e:
v(n)

Calculate:
v(n)

h=0.1;
t=0:h:1;

x(n)=x=[0
......3.5355];

START

⮚ Algorithm:
a. Express the x data in row matrix form

b. Rate the time interval with the symbol h = 0.1

c. Give a time value from 0 to 1.0 with interval h 🡪 t=0:h:1.0

d. For n = 1: 9 calculate the speed:

⮚ v(n)=(-3*x(n)+4*x(n+1)-x(n+2))./(2*h); 🡪 formula DD3

e. For n = 10: 11 calculate the speed:

⮚ v(n)=(3*x(n)-4*x(n-1)+x(n-2))./(2*h); 🡪 DB3 formula

f. For n = 1: 8 calculate the acceleration:

⮚ a(n)=(-x(n+3)+4*x(n+2)-5*x(n+1)+2*x(n))./(h^2);
g. For n = 9: 11 calculate the acceleration:

⮚ a(n)=(-x(n-3)+4*x(n-2)-5*x(n-1)+2*x(n))./(h^2);
h. Display the values of t, v, a and x as a column matrix 🡪 [t' x' v' a']

i. Graph the relationship between x vs t, v vs t and a vs t in one screen with the

subplot command.

⮚ Flow Chart:

Create a
graph:

x vs t
v vs t
a vs t
FINISH

1

for n=9:11

Show: [t'
x' v' a']

Calculate:
a(n)

Computational Physics Practicum
Module

10

⮚ Listing Program
x=[0 0.4975 0.9806 1.4367 1.8570 2.2361 2.5725 2.8673 3.1235 3.3448 3.5355];
h=0.1;
t=0:h:1;
for n=1:9

v(n)=(-3*x(n)+4*x(n+1)-x(n+2))./(2*h);% DD3 formula
end
for n=10:11

v(n)=(3*x(n)-4*x(n-1)+x(n-2))./(2*h);% DB3 formula
end
for n=1:8

a(n)=(-x(n+3)+4*x(n+2)-5*x(n+1)+2*x(n))./(h^2);% DD4 formula
end
for n=9:11

a(n)=(-x(n-3)+4*x(n-2)-5*x(n-1)+2*x(n))./(h^2);% DB4 formula
end
[t' x' v' a']
subplot(1,3,1),plot(t,x,'b')
xlabel('t (sec)')
ylabel('x (meters)')
title('Graph of x vs t')
grid on
subplot(1,3,2),plot(t,v,'r')
xlabel('t (seconds)')
ylabel('v (meters/second)')
title('Graph of v vs t')
grid on
subplot(1,3,3),plot(t,a,'k')
xlabel('t (seconds)')
ylabel('a (meters/second2)')
title('Graph of a vs t')
grid on

⮚ Numbers
Program Output:

t x v a

0 0 5.0470 -0.1800
0.1000 0.4975 4.9660 -1.8200
0.2000 0.9806 4.7400 -3.0400
0.3000 1.4367 4.4090 -3.9700
0.4000 1.8570 4.0045 -4.3800
0.5000 2.2361 3.5720 -4.4600
0.6000 2.5725 3.1410 -4.2300
0.7000 2.8673 2.7365 -3.9200
0.8000 3.1235 2.3660 -3.5600
0.9000 3.3448 2.0385 -3.1200
1.0000 3.5355 1.7540 -2.6300

Computational Physics Practicum
Module

11

⎛

⎠⎝

Graphics:

4

3.5

3

2.5

2

1.5

1

0.5

0

Graph of x vs t

0 0.5 1
t (seconds)

5.5

5

4.5

4

3.5

3

2.5

2

1.5

Graph of v vs t

0 0.5 1
t (seconds)

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

Graph of a vs t

0 0.5 1
t (sec)

1.4. Practice Questions

1. Prove the first differential formulations DP5, DD3 and DB3 and the second differential

formulations DP3, DD4 and DB4 as shown in Table 1 by Tylor series expansion.

2. The motion of a parachutist from the moment he exits the airplane until just before the

umbrella expands is called free fall. The equation of motion can be expressed by the

equation :

d = ⎜t - ⎛1 - e - ct ⎞⎞
mgm ⎜ m ⎟⎟

c ⎜ c ⎜ ⎟⎟
⎜ ⎟
⎝ ⎠

with d distance traveled, m mass of the parachutist, c coefficient of air friction and t

plunge time. If m = 68.1 kg, g = 9.8 m/sec2 , and c = 12.5 kg/sec, then:

a. Create a program to determine the speed and acceleration of the parachutist at 1,

2, 3, 10.

b. Graph the relationship between d, v and a with t on one window.

3. The voltage E = E(t) in an electrical circuit has the equation :

E(t) = L dI + R I(t)
dt

x
(m

et
er

)

v (m
et

er
/s

ec
on

d
) a(
m

et
er

/s
ec

on
d2

)

Computational Physics Practicum
Module

12

where R is resistance and L is inductance. Value of R = 2 Ω, L = 0.05 H and value of I(t)

as in the following table:

t (seconds) I(t) in Amperes

1,0 8.2277
1,1 7.2428
1,2 5.9908
1,3 4.5266
1,4 2.9122
1,5 1.2146
1,6 -0.4974
1,7 -2.1559
1,8 -3.6962
1,9 -5.0598
2,0 -6.1962

a. Create a program to determine the values of I‘ = dI/dt and E when t = 1.0; 1.1; 1.2;

1,3; 2.0 seconds with the first differential formulation.

b. Graph I, E, and dI/dt as a function of t.

4. The data on the measurement of the distance d = d(t) of an object moving with

respect to time is labeled as follows:

t (seconds) d(t) in meters

1 0.3386

2 1.3111

3 2.8573

4 4.9224

5 7.4571

6 10.4168

7 13.7610

8 17.4530

9 21.4599

10 25.7516

Find its velocity and acceleration at time t = 1, 2, 3,10 seconds.

Computational Physics Practicum
Module

13

CHAPTER
II NUMERICAL

INTEGRATION
2.1. Destination

After completing this module, students are expected to have the ability t o solve physical
problems using numerical integration methods through the steps of preparing numerical
formulations, preparing algorithms, preparing flow charts and creating computer programs.

2.2. Numerical Integration Formula

Integration means combining parts that are

small into a larger whole. Mathematically, function

integration is expressed by:

b

I = ∫ f(x)dx = F(b) - F(a)
a

(2.1)

where F(x) is the anti-difference of the function f(x) that satisfies dF/dx = f(x). The integrant

function in equation (2.1) can be :

➢ Simple continuous functions, for example: polynomial, exponential and trigonometric.

➢ Complex continuous functions that are difficult or impossible to solve by
analytical methods

➢ Functions whose values have been tabulated
When analytical methods fail to solve the integration problem of a function, a possible

alternative method is the numerical method. The numerical method is a way of calculating

the area under the function by dividing the integration interval (between a and b) into

smaller bars and then finding the approximate area of each bar formed and summing it up

as a whole. Numerical integration formulas are broadly grouped into 2, namely:

➢ Classic Formula, which is a formula based on taking an interval (segment)
with equal spacing. An example of this formulation is the Newton-Cotes Method

(Trapezoidal and Simpson methods)

➢ Modern Formula, which is a formula based on interval retrieval

(segments) with spaces not necessarily equal. Examples of this formulation are the

Romberg Integration Method and Gauss Quadrature.

Lecture Module
KGoammpbuatras6i.FMisiektaoodleehTrWaapressoinuo
m double segmented

14

h

2.2.1. Classic Formulation

The Newton-Cotes method is based on converting the integrand function f(x) into an

nth-order polynomial function of the form shown in equation (2.2).

fn(x) = a0 + a1x + a2x2 + a3x3 + ... + an-1xn-1 (2.2)

If n = 1 it is called the trapezium method, if n = 2 it is called the Simpson 1/3 method and if n

= 3 it is called the Simpson 3/8 method.

2.2.1.1. Single-Segment Trapezoidal Method (TST)

➢ The integration interval (a to b) is divided by one segment h with h = b-a
➢ The integrand function is a first-order polynomial
➢ The integration value is approximated by the area of the trapezium (I ≈ area of the trapezium).

f(x)

f(b)
f(a)

x
a b

Figure 5. Single-segment Trapezoidal method

b b
I = ∫ f(x) dx ≈ ∫ f1(x) dx = [f(a) + f(b)] (2.3)

a a 2

2.2.1.2. Double-Segmented Trapezoidal Method

➢ The integration interval (a to b) is divided into n segments, with the width of each segment h =
(b-a)/n

➢ The integrand function is a first-order polynomial
➢ The integration value is approximated by the sum of the trapezium areas of each segment

f(x)

f(b)
f(a)

x
xo x1 x2 x3xn a b

h

h h h h h h

Physics Computing Lecture Module by
Warsono

15

h

b

I = ∫ f(x) dx ≈
a

x1

∫ f1(x) dx +
xo

x2

∫ f1(x)dx
+

x2

x 4

∫ f1(x)dx ++
x3

n

∫ f(x)dx
xn-1

I = h [f (

x
2

o) + f (
x1

)]+ h [f (x
2 1) + f (

x2

)]+ h [f (x
2 2) + f (

x3

)]+ ... + h [f (

x
2

n-1) + f (xn)]

⎡ n-1 ⎤
I = ⎢ f (xo) + 2∑ f (xi) + f (xn)⎥ (2.4)

2⎢⎣ i=1 ⎥⎦

2.2.1.3. Simpson 1/3 Single Method (S3T)

➢ The integration interval (a to b) is divided by two segments h with h = (b-a)/2
➢ Using 3 abscissa points: xo, x1 and x2

f(x1)
f(x2)
f(xo)

x
xo x1 x2

a b
Figure 7. Single 1/3 Simpson method

➢ Integrant function is a second-order Lagrange polynomial 🡪 quadratic

f(x) = f2(x)

= (x - x1)(x - x2) f(x) +
(x - xo)(x - x2) f(x)

(xo - x1)(xo - x2) o (x1 - xo)(x1 - x2)
1

+ (x - xo)(x - x1)
(x2 - xo)(x2 - x1)

➢ Integration value:

f(x2) (2.5)

x2 x2 h []I = ∫ f (x) dx = ∫ f2 (x) dx =
xo xo

3 f(xo) + 4 f(x1) + f(x2) (2.6)

f(x)

h h

Physics Computing Lecture Module by
Warsono

16

h h h

hh h h h h h h

2.2.1.4. Simpson 1/3 Multiple Segment Method (S3SG)

➢ Integration interval (a to b) divided by n segments with each segment
h = (b-a)/n

f(x)

xo x1 x2
x

xn-1 xn

Figure 8. Simpson's method 1/3 multiple segments

➢ The integration value is the sum of all segments:
b xn x2 x4 x 4 xn

I = ∫ f (x) dx = ∫ f2 (x) dx = ∫ f2 (x) dx + ∫ f2 (x) dx + ∫ f2 (x) dx + ... + ∫ f2(x) dx
a xo xo x2 x 4

I = h [f (x) + 4 f (x) + f (x)]+ h [f (x) + 4 f (x) + f (x)]
3 o 1 2 3 2 3 4

xn-2

+ h [f (

x
3
⎡

4) + 4 f (x5) + f (

x6)

)]+ h [f (x
3

n-2) + 4 f (xn-1) + f (xn)]
⎤

h ⎢ n-1 n-2 ⎥
I = ⎢ f (xo) + 4 ∑ f (xi) + 2 ∑ f (xi) + f (xn)⎥ (2.7)

3 ⎢ i=1
⎣⎢ i= odd

i=2 ⎥
i=even ⎥⎦

2.2.1.4. Simpson 3/8 Single Method (S8T)

➢ Integration interval (a to b) divided by n segments with each segment
h = (b-a)/3

➢ Using 4 abscissa points: xo, x1, x2 and x3

f(x)

x x xo 1 2 3
x xa b

Figure 9. Single 3/8 Simpson method

Physics Computing Lecture Module by
Warsono

17

h h h h h h h h

⎥

➢ The integrand function is a third-order Lagrange polynomial
➢ Integration value:

x2 x2

I = ∫ f (x) dx = ∫ f3 (x) dx
xo

I = 3h [f (

x
8

xo

o) + 3 f (x1) + 3 f (x2) + f (x3)] (2.8)

2.2.1.5. Simpson Method 3/8 Multiple Segments

➢ Integration interval (a to b) divided by n segments with each segment
h = (b-a)/n

f(x)

xo x1 x2 x3 xn-3 xn-2 xn-1 xn
x

Figure 8. Simpson's method 1/3 multiple segments

➢ The integration value is the sum of all segments:
b

I = ∫ f(x) dx
a
xn x3 x6 x9 xn

= ∫ f3 (x) dx = ∫ f3 (x) dx + ∫ f3 (x) dx + ∫ f3 (x) dx + + ∫ f3 (x) dx
xo xo x3 x6 xn-3

I = 3h [f (

x
8

o) + 3 f (x1) + 3 f (x2) + f
(x3)

)]+ 3h [f (x
8 3) + 3f(x4) + 3f(x5) + f(x6)]

+ 3h [f (

x
8

6) + 3 f (x7) + 3 f (x8) + f (x9)]+

+ 3h [f (

x
8
⎡

n-3) + 3 f (
x

n-2) + 3 f (
x

n-1) + f (xn)]
⎤

3h ⎢ n-1 n-1
⎥

I = ⎢ f (xo) + 3 ∑ f (xi) + 2 ∑ f (xi) + f (xn)⎥ (2.9)
8 ⎢ i=1

⎢ i≠keli

⎣ Page 3

i=3 ⎥
i=keli ⎥
patan 3 ⎦

Physics Computing Lecture Module by
Warsono

18

2

2

Romberg Integration

Romberg integration is based on the successive use of the trapezium rule. The method

of obtaining the estimated value of the integral is done by using two other estimated

integrals to get a more accurate result. This method is called Richardson extrapolation.

The estimates and errors in the multiple segment trapezium method can be expressed

generally as follows:

I = I(h) + E(h) (2.10)

where I is the exact price of the integral, I(h) is the approximation value for using n

segments of the trapezium method with h = (b-a)/n, and E(h) is the truncation error. If we

use two step sizes h1 and h2 then the integration value for step size h2 is :

I = I(h2) + E(h2) (2.11)
with

E(h) = I(h1) - I(h2) (2.12)

1 - (h1/h2)
2

which is obtained by combining the use of step size h1. Substitution

equation (2.12) to equation (2.11) obtained the estimated value of integration:

I ≈ I(h) + I(h1) - I(h2) (2.13)

1 -(h1 / h2)
2

For the case h2 = h1 /2, equation (2.13) becomes :

I ≈ I(h2) +
1 [I(h2) - I(h1)]

22 - 1
I ≈ 4 I(h2) - 1 I(h1) (2.14)

3 3
The general form of Romberg integration is:

4k -1 I j +1 ,k -1 - I j ,k -1
I = I j ,k ≈

with :
4k -1 - 1

(2.15)

Ij,k = corrected integral
Ij+1,k-1 = better integral
Ij,k-1 = less accurate integral
j= related to the number of segments; j =1 for 1 segment, j =2 for 2 segments, j =3

for 4 segments, and so on; number of segments = 2 j-1
k = level of integration; k =1 corresponds to the error for a single segment

Physics Computing Lecture Module by
Warsono

19

Based on equation (2.15), it can be seen that the improved integration value requires two

less accurate integration values. The relationship is often called the recursion relationship.

The recursive relations of Romberg integration are shown in Table 1 below:

Table 1. Recursive relations of Romberg integration

j Ij,1 Ij,2 Ij,3 Ij,4 Ij.5

1 I1,1 I1,2 I1,3 I1,4 I1,5

2 I2,1 I2,2 I2,3 I2,4

3 I3,1 I3,2 I3,3

4 I4,1 I4,2

5 I5,1

Based on the table, if j = 1, k = 2 which means we determine the value of I1,2 then we

need I1,1 and I2,1 so that the integral value is :

I ≈
4 I2,1 - I1,1 =

4 I2 ,1 - I1,1 (2.16)
1,2 4 - 1 3

The program algorithm for the Romber integration method is as follows:

Physics Computing Lecture Module by
Warsono

20

Gauss quadrature

Gauss quadrature is an integral estimation technique by taking basis points freely

so that the estimated value of the integral becomes better. This technique is clearly

different from the Newton-Cotes formulation which takes certain and fixed basis points.

An illustration of the difference between the two techniques is shown in Figure 9.

f(x) f(x)

a (a) b x
x1

x
(b) x2

Figure 9. (a). Trapezium rule using the Newton-Cotes method.
(b). Trapezium rule using the Gauss Quadrature method

In this section, the type of Gauss Quadrature that will be discussed is the Gauss-

Legendre formula derived using the indeterminate coefficient method.

a. Gauss-Legendre Two-Point Formula

In the single-segment trapezium rule in the Newton-Cotes formula, the integration value is

expressed by :

I ≈ (b - a) f (a) + (b - a) f (b)
2 2 (2.17)

In Gauss Quadrature, the value of integration is expressed by an equation of the form:

I ≈ c1 f (x1) + c2 f (x2) (2.18)

where c1 and c2 are unknown coefficients. The points x1 and x2 are non-fixed points so the

function value still has to be found. Therefore, in equation (2.18) there are four unknown

values that must be found. To determine these values, four boundary conditions are

required.

The steps to determine the value of the unknown coefficient are as follows:

🞋 Let equation (2.18) be suitable for the integral of a constant and a linear function so that

we can obtain two conditions.

Physics Computing Lecture Module by
Warsono

21

3

3 3

o

1

1

2

🞋 Suppose equation (2.18) is also suitable for the integral of a parabolic function (f(x) = x2)

and a cubic function (f(x) = x3) so that we can obtain two conditions

others.

With this assumption, we can determine the four unknown values. The four equations to determine

these values are:

c1 f (x1) + c2 f (x2
) =

c1 f (x1) + c2 f (x2) =

c f (x) + c f (x) =

1

∫1 dx = 2
-1
1

∫ x dx = 0
-11 x2 dx = 2

(2.19.a)

(2.19.b)
(2.19.c)

1 1 2 2 ∫
-1 3
1

c1 f (x1) + c2 f (x2) = ∫ x3 dx =
0

-1

(2.19.d)

The solution to equations (2.19.a) to (2.22.d) for c1 = c2 = 1 is :

x =
- 1

= -0,577350269 ..
3

x =
1 = 0,577350269 ..

If the four values are substituted into equation (2.17), the two-point Gauss-Legendre

formulation will be obtained as follows:

I ≈ f(- 1) + f(1) (2.23)

The use of integration limits from -1 to 1 in equations (2.19.a) to (2.19.d) is to ease the

arithmetic and make the formulation as general as possible. What if the limits of integration

are from a to b? We use a new variable xk that has the following relationship with the

variable x:

x = ao + a1 xk (2.24)

🞋 If the lower bound x = a corresponds to xk = -1 then equation (2.24) becomes
:
a = ao - a1 (2.25)

🞋 If the upper bound x = b corresponds to xk = 1 then equation (2.24) becomes :
b = ao + a1 (2.26)

The simultaneous solution of equations (2.25) and (2.26) is :

a = b+a
2

a = b-a
2

(2.27)

(2.28)

Physics Computing Lecture Module by
Warsono

22

∫ 4x - x2 dx

i keli ⎥

If equations (2.27) and (2.28) are substituted into equation (2.24) then we get :

x = b + a + b - a x
2 2 k (2.29)

The derivative of equation (2.29) is :

dx = b - a dx
2 k (2.30)

If equations (2.29) and (2.30) are inserted into the function integration equation at the boundary a

to b then obtained :

b f (x) dx = 1
f ⎛ b + a + b - a x ⎞ ⎛ b - a ⎞ dx∫∫ ⎜ k ⎟⎜⎟ k

a -1 ⎝ 2 2 ⎞⎠⎝ 2 ⎠

= ⎛ b - a ⎞1
 f ⎛ b + a + b - a x dx

⎜⎟ ∫ ⎜
⎝ 2 ⎠ -1 ⎝ 2 2 k ⎟⎠ k

= ⎛ b - a ⎞
 ⎡c ⎛ b + ab - a ⎞f + x + c ⎛ b + ab - af + x ⎞ + ... + c ⎛ b + ab - a ⎞⎤f + x

⎜⎝ 2 ⎠⎟ ⎢⎣ 1 ⎝⎜ 2 2 1 ⎠⎟ 2 ⎜⎝ 2 2 2 ⎟⎠ n ⎜⎝ 2 2 n ⎟⎠⎥⎦

(2.31)

where n is the number of points used. For n = 2, c1 = c2 = 1 so the equation becomes:
b
f (x) dx = ⎛ b - a ⎞ ⎡ f ⎛ b + a + b - a x ⎞ + f ⎛ b + a + b - a x ⎞⎤

∫ ⎜ 2 ⎟ ⎢ ⎜
2

1 ⎟ ⎜2 2 ⎟⎥2
a ⎝⎠ ⎣ ⎝ ⎠ ⎝ 2 ⎠⎦ (2.32)

PRACTICE QUESTIONS

1. Use the multiple segment trapezium rule to determine the estimated value of the

following integration:

2

0

Use the rule with the number of segments n = 4.

2. Numerical integration with Simpson's rule 3/8 multiple segments is expressed with the

following formulation:

3h ⎡⎢
n-1

⎤
n -1 ⎥

I =
8

 ⎢f (xo) + 3 ∑ f (xi) + 2 ∑ f (xi) + f (xn)⎥
⎢ i =1 i =1 ⎥

i ≠keli
pa tan
3

=
pa tan 3 ⎦

Physics Computing Lecture Module by
Warsono

23

1 +
x

2 1 - ⎜⎟
⎥

Optical fiber
core

aOptical fiber
core z

Make it:

a. Algorithm

b. Flow chart 1∫ 1 2 dx
c. Use the rule to calculate the integral value of :

number of segments n = 4.

3. Find the integration value of the following
function:

1

0 with

I = ∫
0

1 + 9x dx4

with integration:

a. Third-order Romberg method (I1,4)

b. Three-point Gauss-Legendre method

4. The optical power efficiency at longitudinal splitting of multiform ripple index optical

fiber is expressed by the following integration equation:

⎤ ω
η = 4 ω∫ ⎢⎡arccos⎜⎛ ω x ⎞⎟ - ω x ⎛ ω x ⎞2

dω
�

π NA 0 ⎢
⎣

NA

⎝ 2 ⎠ 2 ⎝ 2 ⎠ ⎥⎦(1 + ω
2)2

with ω = , x = z/a, NA numerical apparture, z distance
1 - NA2

longitudinal separation and a the radius of the optical fiber.

Transmitter endReceiver end

Create a program using the multi-segment trapezoidal integration method to calculate

the value of optical power efficiency under the conditions:

⮚ Program input: NA = 0.1 (0 < NA < 1)
⮚ Value of x from 0 to 50 with step 0.5 (x =0:0.5:50)
⮚ Value h =0.01
⮚ Program output:

• Display of η values for all x values
• Relationship graph between efficiency η and x

Physics Computing Lecture Module by
Warsono

24

p

PROGRAM ALGORITHM

⮚ Define the integrant function:
f=inline('(acos(0.5*x.*y)-0.5*x.*y.*sqrt(1-
0.5*x.*y).^2)).*(y./(1+y.^2).^2)','x','y');

⮚ Input the value na (0 < na < 1) from the keyboard
⮚ Give the value of the lower limit of integration: wo = 0;
⮚ Calculate the upper limit of integration: w = na/sqrt(1-na^2)
⮚ Give index value =0
⮚ For j = 0 to 50 with a step of 0.5:

• x = j
• index = index +1
• give step value h = 0.01
• Calculate the function value at the lower boundary: fwo = f(x,wo);
• Calculate the function value at the upper boundary: fw=f(x,w);
• Calculate the number of segments: n=(w-wo)/h;
• Initialize the middle term with zero: st =0
• For i from 0 to n-1:

► Calculate the value of the middle term: st=st+f(x,fwo+i*h);
• Calculate the integration value with the

trapezoidal method:
it(index)=(4/(pi*na^2))*0.5*h*(fwo+2*st+fw);

⮚ Display the integration value as a column matrix: [it']
⮚ For j=0:0.5: 50, draw the graph of it as a function of

j=0:0.5:50;
plox(j,it,'b')
grid on

5. The wave function in Fresnel diffraction is expressed in the form of the following

equation:

Ε =
iα e−ikD [C(x) - iS(x)][C(y) - iS(x)]
2D

with C and S are the Fresnel integrals expressed as follows:
ω

C(ω) = ∫ cos
0

ω

S(ω) = ∫ sin
0

π u 2
du

2
π u2

du
2

The variable ω is the end coordinate of the casement and u is a dummy variable.

Make a program with Simpson 1/3 and 3/8 method for :

a. Calculate the values of C(ω) and S(ω) as follows:

⮚ Value of h = 0.01;

Physics Computing Lecture Module by
Warsono

25

⮚ ω value from 0 to 8 with step 0.1 🡪 ω = 0:0.1:8

b. Create graph C(ω) versus S(ω) for region positive and negative
regions

🡪 plot(C,S,-C,-S)

An illustration of the program results for the graph of C(ω) versus S(ω) is shown
in the following figure:

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Physics Computing Lecture Module by
Warsono

26

CHAPTER
III DETERMINING THE ROOTS OF AN

EQUATION

PURPOSE

After completing this module, students are expected to be able to use the method of
determining the roots of an equation to solve related physical problems through the steps
of preparing numerical formulations, preparing algorithms, preparing flow charts and
creating computer programs.

THEORY

The root of an equation is basically the value of a variable that makes the equation

zero. Suppose the equation is y = f(x), if x causes y = 0 then x is called the root of the

equation. Numerical methods to determine the root of an equation can be grouped into

two, namely closed methods and open methods. Closed methods use initial estimates that

confine the root value, for example: bisection method and false position method (regula

falsi). Open methods do not require an initial estimate that brackets the true root value.

Examples of open methods are: simple one-point iteration method, Newton-Raphson

method and Secant method.

Bisection Method

The divide-by-two method is a method of finding the roots of a function that begins

with the placement of an interval with each interval always divided by two. If the function

values at the interval boundaries differ in sign, then the function value in the middle is

evaluated. The location of the root is determined to be in the middle of the subinterval. The

process is repeated until an adequate estimate is obtained. The outline of the Bagidua

method is shown in the following algorithm:

➢ Step 1: Choose a lower estimate xb and an upper estimate xa (xb < xa) for the function value to

change

sign along the interval ⇒ f(xb).f(xa)<0;

Physics Computing Lecture Module by
Warsono

27

➢ Step 2: First estimate xr=(xb+ xa)/2;

Physics Computing Lecture Module by
Warsono

28

f(x)

xr

xb xa

➢ Step 3: Evaluate f(xb)f(xr):

a. If < 0, then root in the first subinterval ⇒ xa = xr ; go to step 4

b. If > 0, then root in the second subinterval ⇒ xb = xr ; go to step 4

c. If = 0, then root = xr ⇒ stop computing

➢ Step 4: Calculate the new estimate: xr =(xb+ xa)/2;

➢ Step 5: Decide whether the new estimate is accurate enough. If "yes" ⇒ stop the
computation, if "no" ⇒ return to step 3.

An illustration of the Bagidua method can be depicted in Figure 3.

x

(ii)

Figure 3.1. (i). Determination of the estimated root based on steps 1 and 2
(ii). Determination of the new estimated roots that satisfy steps 3.a. and 4

The estimated error (error) of the Bagidua method can be expressed by the following

formulation:

εa = x 100 oo (3.1)

with xr = old root estimate and xr
' = new root estimate.

Example 3.1:

Write a program to calculate the approximate value of the roots of the function f(x) = x2 -2

by the Bagidua method using a lower estimate of 0 and an upper estimate of 2.

x' - x
r r

x'
r

f(x)

xb xr xa x

(i)

Physics Computing Lecture Module by
Warsono

29

False Position Method (Regula Falsi)

The false position method is done by joining points whose function values differ in sign

with a straight line. The estimated root value lies at the intersection of the line with the

horizontal axis (x-axis). An illustration of the false position method is shown in Figure 4.

🞋 The formulation of the False Position (Regula Falsi) method is expressed by the equation as
The following:

🞋 From the picture:

 f(x) x - x
b = rb f(xa)xr -

xa

x = x

Figure 3.2. Illustration of the False Position Method

- (xa - xb)f(xa) (3.2)
r a f(xa) - f(xb)

Example 3. 2:

Solve Example 3.1 with the false position method!

3. Simple One-Point Iteration Method

The way to determine the roots of a function using the simple one-point iteration

method is by rearranging the function f(x) = 0 such that x is in the left-hand side of the

equation. This value of x is then expressed as the new function g(x). For example, the

function f(x) = exp(-x) - x can be transformed into :

f(x) = exp(-x) - x = 0 x = exp(-x) = g(x)(3.3)

If x is given an initial guess value xi , then it can be used to determine a new guess value

xi+1.

The estimated equation can be expressed as:

xi+1 = g(xi) (3.4)

f(x) f(x)b

xr xa

xb x

f(xa)

Physics Computing Lecture Module by
Warsono

30

BEGIN

TK =10-5

I = 0
SEL = 1
XR = ?

REPEAT

Show:
XR F1

NOT
SEL < TK ? UNTIL

YES

Display:
FUNCTION ROOT =
XR NUMBER OF
ITERATIONS = I

END

I = I + 1

XN:=G(XR)
SEL:=ABS(XN-XR)
XR:=XN
F1:=G(XR) -XR

If the estimated root value is xr , then the iteration can be stopped if the value of xr - xi+1 = g(xr)

- g(xi) is less than the error tolerance value. The error tolerance value can be determined as

small as possible so that the estimated root value is close to the true value. The flowchart

for determining the root value by the simple one-point iteration method of the function f(x)

= exp(-x)-x is shown in Figure 5.

FUNCTION:
G = EXP(-X)

Figure 3.3. Flowchart of Simple One-point Iteration Method

Example 3.3 roots of the function f(x) = e-x -x by the Simple One-Point Iteration
method

Physics Computing Lecture Module by
Warsono

31

i

4. Newton-Raphson Method

The Newton-Raphson method is a root determination technique based on the

intersection of the tangent line made at the initial estimated value with the x-axis

(horizontal), see Figure 3.4.

Figure 3.4. Newton Rapson Method

Determining the roots of a function with the Newton-Raphson method can be done

through the first derivative of x which is equal to the slope of the tangent line:

f ' (x) = f (xi) - 0
i

xi - xi+1
which can be rearranged into iteration form as follows:

(3.5)

x = x - f(xi) (3.6)
i+1 i

f' (x)
The iteration step starts from the initial guess x0 , then x1 , x2 , x3 and so on are calculated.

Iteration can be stopped until the value of x is close to the true value, that is, if the absolute

value of (xi+1 - xi)/xi+1 is less than or equal to a certain tolerance value.

Example 3. 4: Find the roots of the function f(x) = x2 -2 with initial estimate 1.

5. Secant Method

The Secant method is an improvement of the Newton-Raphson method by replacing

the first derivative of f‘ (x) with a finite difference as follows:

f' (x) ≈ f (xi-1) - f(xi) = f (xi) - f(xi-1) (3.7)

xi-1 - xixi - xi-1

Physics Computing Lecture Module by
Warsono

32

Silencer

Per

This replacement aims to avoid the difficulty of decreasing the function if the function is

not familiar. Furthermore, if equation (3.7) is substituted to equation (3.6), the formulation

of Secant method is obtained as follows:

xi+1 = xi
- (xi - xi-1)f(xi)

f(xi) - f(xi-1) (3.8)

PRACTICE QUESTIONS

1. A function is expressed by the equation :

f(x) = (1 - 0.6 x)
x

Find the roots of the function by Bisection and False Position (Regula Falsi) methods.

Take the lower estimated value xb = 1 and upper xa =3.

2. The equation of parabolic motion of an object is expressed as :

y = x - 0.1 x2

with x horizontal position and y vertical position. Determine the farthest distance

reached by the object using the Simple One-Point Iteration and Newton-Raphson

methods. Take the initial estimated value of 8.

3. Find the real root of the following equation using the Secant method:

f(x) = x3 - 6x2 + 11x - 6

Take the initial estimates of 2.5 and 3.6.

4. The suspension system of a car can be approximated by a damped oscillation system.

The figure below shows the suspension system of a car and an approximation of the

physical system.

m

-kx

-c(dx/dt)

m

Physics Computing Lecture Module by
Warsono

33

d x

o

γ

v

The equation of motion of the system is expressed by a second-order differential equation

as follows: 2
+ c dx + k x = 0

dt 2
d 2 x
+

m dt m
dx 2

2 γ + ωo x = 0
dt dt

The solution equation is :x(t) = e γt x ⎛ cos(pt) + sin(pt) ⎞

o ⎜ ⎟

with :

Issues:

⎝

γ =
c
2m

; p
=

p ⎠

and ω2 > γ2

Create a program using the Secant method to calculate the approximate value of the

time when the car passes the first 3 equilibrium points. Given c = 14000 kg/s, m

= 1200 kg, k = 1250000 kg/det2 and xo = 3 cm. Graph the relationship between x(t)

with t.

5. The relationship between pressure, volume and temperature in real gases is usually

expressed by the van der Waals equation which has the form:

⎛ p + a ⎞
⎜ 2 ⎟(v - b) = RT
⎝ v ⎠

where p is the gas pressure, v = V/n is the molar volume of the gas, a and b are

constants.

Issues:

Write a program using the Newton-Raphson method to calculate the molar volume of

oxygen gas (v) at gas pressures of 10, 20, 30 ... 100 atm and temperatures of 300o K, if

the constants a = 1.360; b = 0.03183 and R = 0.082054 lt.atm/(mol.K) are known.

Settlement Instructions:
Transform the van der Waals equation into the form :

f(v) = ⎛ p + a ⎞
- RT

⎜
v 2

 ⎟(v - b)
f' (v)

 ⎝
p - a

 ⎠ 2ab
= + 3

v 2
Use the functions above to estimate the value of v using the known values of variables and

constants.

ω2 - γ2
o

Physics Computing Lecture Module by
Warsono

34

CHAPTER
IV ORDINARY DIFFERENTIAL EQUATIONS

(PDB)

4.1. PURPOSE

After completing this subject module, students are expected to be able to use the Euler and
Runge-Kutta methods to solve physical problems related to ordinary differential equations
(PDB) through the steps of preparing numerical formulations, preparing algorithms,
preparing flow charts and creating computer programs.

4.2. INTRODUCTION

An ordinary differential equation (PDB) is a differential equation whose function

contains only one independent variable. If the function contains more than one

independent variable, then the equation is called a partial differential equation (PDP).

Ordinary differential equations have the form :

dy = f (x,
y) dx

(4.1)

In equation (4.1), x is the independent variable and y is the dependent variable. The general

solution of the equation is :

yn+1` = yn + φh (4.2)

with ϕ the slope and h the step size. The slope ϕ is used to extrapolate an old price yn to a

new price yn+1 along a distance h. This formula can be applied step by step for further

calculations. Numerically the GDP can be solved by Euler and Runge-Kutta methods.

4.3. EULER METHOD

The solution of the ordinary differential equation as in equation (4.2), according to

Euler's method is interpreted as :

yn+1` = yn + f(xn ,yn) hdy
(4.3)

with f(xn ,yn) = is a differential equation evaluated at xn and yn .
dx

Physics Computing Lecture Module by
Warsono

35

clear all;
clc;
v=inline('10+t','t');
s=inline('10*t+0.5*t.^2','t');
t0=0;
tm=10;
n=100;
h=(tm-t0)/n;
sn=0;
for i=1:n

tn=t0+i*h;
sn1=sn+v(tn)*h;
sn=sn1;

end
Sa=s(tm);
ea=100*abs((Sa-sn1)/Sa);
disp(['Analytical Distance Value (Sa) when t = ',num2str(tm), ' is = ',num2str(Sa)]);
disp(['Numerical Distance Value (Sn) when t = ',num2str(tm), ' is = ',num2str(sn1)]);
disp(['Error with h = ' , n u m 2 s t r (h), ' is = ',num2str(ea), ' % ']);

The value of the analytical distance (Sa) when t =
10 is = 150 The value of the numerical distance
(Sn) when t = 10 is = 150.5 The error with h = 0.1
is = 0.33333%.

The solution of equation (4.3) with a computer program begins by entering the initial

value of x0 , y0 , the amount of step h and the final value of xm which will be determined by

the value of ym. Next, with the initial values x0 , y0 , and h, y1 and x1 are calculated. Thus, the

iteration continues with the addition of a step of h at x until xm so that the value of ym is

obtained. Repetition of the program iteration can also be done to get the value of ym that is

really close to the actual value by reducing the step value h. Iteration is stopped when the

difference between the new y value and the old y value is small enough.

Example 4.1. : Find the distance traveled by an object at t = 10 seconds if the object is

moving with speed 𝑣 = 10 + 𝑡, and S = 0 when t = 0.

Completion:

Program:

𝑦𝑛+1 → 𝑆𝑛+1; 𝑦𝑛 → 𝑆𝑛 ; ƒ(𝑥𝑛, 𝑦𝑛) → 𝑣(𝑡𝑛) ; 𝑡𝑛 = 𝑡0 + i ∗ ℎ

Program Results:

Physics Computing Lecture Module by
Warsono

36

2

4.4. RUNGE- KUTTA METHOD

There are several types of Runge-Kutta methods, but in general the iteration formula

can be written in the form:

yn+1 = yn + f (xn ,yn ,h)
f (xn ,yn ,h) = a1k1 + a2k2 ++ amkm
h = xn +1 - xn (4.4)

with:

k1 = hf (xn ,yn)

k2 = hf(xn + p1h,yn + q11k1)

k3 = hf(xn + p2h,yn + q21`k1 + q22k2)
....................

km = hf(xn + pm-1h,yn + qm-1,1`k1 + qm-1,2k2 + ... + qm-1,m-1km-1......) (4.5)

4.4.1. First Order Runge-Kutta

The first-order Runge-Kutta method is obtained if m in equation (4.4) is 1 so that

the iteration equation becomes :

yn+1 = yn + f (xn ,yn ,h)
f (xn ,yn ,h) = a1k1 (4.6)

with a1 = 1 and k1 is given by equation (4.5) so the iteration formula is :

yn+1 = yn + f (xn ,yn)h (4.7)

The first-order Runge-Kutta iteration formula in equation (4.7) is the same as the Euler

method iteration formula in equation (4.3).

4.4.2. Second-order Runge-Kutta

The second-order Runge-Kutta method is obtained when m in equation (4.4)

According to Heun, the second-order Runge-Kutta iteration is formulated as follows:

yn+1 = yn + 1 (k1 + k2)
k1 = hf(xn ,yn)
k2 = hf(xn + 1 h,yn + 1 k1) (4.8)

2 2

Physics Computing Lecture Module by
Warsono

37

k

F(t)
m

6

2

4.4.3. Third Order Kutta Runge

The iteration formula used in the third-order Runge-Kutta method is :

yn+1 = yn + 1 (k + k + k)
6 1 2 3

with

k1 = hf(xn ,yn)

k2 = hf(xn + 1 h,yn + 1 k1)
2 2

k3 = hf(xn + h,yn - k1 +2k2) (4.9)

4.4.4. Fourth Order Runge-Kutta

The iteration formula used in the fourth-order Runge-Kutta method is :

yn+1 = yn + 1 [k1 + 2k2 + 2k3 + k4]
with

k1 = hf(xn ,yn)
k2 = hf(xn + 1 h,yn + 1 k1)

2 2
k3 = hf(xn + 1 h,yn + 1 k2)

2 2
k4 = hf(xn + h,yn + k3) (4.10)

SECOND-ORDER DIFFERENTIAL EQUATIONS

Second-order differential equations are commonly found in physics and engineering

problems. For example, a forced damped oscillation system in a spring-mass circuit can be

expressed by the following equation:

d
2x

m
dt 2

+ c dx
dt+ kx = F(t)

2 c dx k 1
d x + m dt + x =
dt m

F(t) x
m c

with m the mass of the oscillating body, c the damping constant, k the spring constant and F(t)

external force (forcing force). The known initial conditions at t = 0 are x(0) and x’’ (0).

The solution of this case is to transform the second-order differential equation into

two first-order differential equations by introducing the variable :

dx = y(t) = x = f (t)
dt

Physics Computing Lecture Module by
Warsono

38

v(t) = ⎢1 - e m ⎥

so the two first-order differential equations are:

dx = y(t) = x = f(t, x,y)
dt
d 2 x dy c k 1 with

== - y + x + F(t) = g(t, x, y)

x(0) =

xo y(0)

= yo
dt 2 dt m m m

If the Euler method is used, the form of the numerical equation is :

yn+1 = yn + h.g(yn)

xn+1 = xn + h. f(tn , xn ,yn)

PRACTICE QUESTIONS
1. The rate at which a parachutist hovers in the air after the umbrella has

expanded is expressed by the formula:

gm ⎡ -ct ⎤

c ⎢ ⎥
⎣ ⎦

with g =9.8 m/s2 , m = 68 kg and air resistance c =12.5 kg/s. Create a program to

determine the distance traveled by the jumper for 10 seconds using the Euler method.

The distance traveled at t = 0 seconds is 0 meters. Graph the relationship between

distance traveled and time for 10 seconds.

2. A differential equation has the following form:

dy
= -xy

dx

If the condition is known when x = 0 the value of y (x=0) = 1, then make a MATLAB

program with the Euler method to calculate the value of y when x = 1, 2, 3 ...10. Make a

graph of the relationship between x and y. Save the program you created with the file

name EULER_2.

3. Make a MATLAB program for case number 1 and number 2 using the Runge-Kutta

Physics Computing Lecture Module by
Warsono

39

method of order 2, 3 and 4. Save the program you have made with the file names RK_2,

RK_3 and RK_4 respectively.

Physics Computing Lecture Module by
Warsono

40

4. A spring-mass damped oscillatory system is described as follows:

Unknown:

load mass = 0.1 kg
damping coefficient = 0.05 kg/sec spring
constant = 0.1 N/m
Initial condition: at time t = 0 🡪 x(0) = 3

🡪 v(0) = 0

a. Make a mathematical model of the oscillating system above and state its

differential equation.

b. Use Euler's method to determine the values of x(t) and v(t) in time t

= [0 10] seconds. Graph x(t) versus t and v(t) versus t.

5. A non-linear pendulum swing is depicted as follows:

Image Description:
► θ : angle of deviation
► L : length of rope
► w : weight of the pendulum
► T : rope tension force

ah deviation

w

The following data is known:
⮚ m=0.5
⮚ L = 1
⮚ g=9.8
⮚ θ(t=0) = π/4 ; θ(t=0) = 0

a. Make a mathematical model of the above non-linear pendulum oscillation

system and state its differential equation.

b. Use Euler's method to determine the values of θ(t) and ω(t) in a time range

t = [0 10] seconds. Graph θ(t) versus t and ω(t) versus t.

c. Repeat a and b for θ(t=0) = π/18; θ (t=0) = 0

linear pendulum swing.

and compare the results to

θ L

T

Ar

w sin θ
w sin θ

Physics Computing Lecture Module by
Warsono

41

r

6. The picture below shows a spherical water reservoir. The reservoir is filled through the

top hole and water comes out through the bottom hole.

The relationship between water level and time is

expressed by the equation :

dh = -
dt

h with Cd an experimental constant of 0.6, A the

cross-sectional area of the hole, r the radius of

the reservoir, h the height of the water in the

reservoir and g the acceleration of the earth's

gravity.

If it is known that r = 2 meters, g = 9.8 m/sec2 , A = πr2 and the initial height of water in

the reservoir is 3 meters, then using the second-order Runge-Kutta method:

a. create a numerical model to determine the value of h as a function of time

b. Make the program algorithm of the numerical model in a.

c. Create a program to calculate the value of h as a function of time and display

the graph.

π(2rh - h2)
Cd A 2gh

Physics Computing Lecture Module by
Warsono

42

d y

CHAPTER
V BOUNDARY PRICE (VALUE) ISSUES

5.1. PURPOSE

After completing this subject module, students are expected to be able to use the Poisson

equation and the Wave equation to solve physical problems related to Boundary Prices

through the steps of preparing numerical formulations, preparing algorithms, preparing flow

charts and creating computer programs.

5.2. THEORY BASIS
Second-order differential equations related to boundary prices are expressed in the form:

d 2 y + k 2 (x)y = S(x) (5.1)
dx 2

with k2 real functions and S inhomogeneous terms. A special situation occurs if the value of k = 0 or

S = 0. If k = 0 then equation (5.1) becomes:

2
= S(x) (5.2)

dx 2

which is called the Poisson equation. This equation can be solved with a computer program

if it is converted into a form that the computer can understand. Using the Tylor series, the

equation can be converted into the form :

yn+1 = 2yn - yn-1 +
h (Sn+1 + 10Sn + Sn-1) 12 (5.3)

If S(x) is certain, then to get the value of yn+1, we need the values of yn and yn-1 as boundary

conditions. For the second case, S=0, equation (5.1) becomes the wave equation as follows:

d 2 y = -
dx 2

k
2 (x)y (5.4)

2

Physics Computing Lecture Module by
Warsono

43

The solution of equation (5.4) using the modified Tylor series is as follows
as follows:

⎛⎜ h2k 2 n ⎞ ⎜⎛ h2k 2 ⎞
2⎜

1 - 5 ⎟yn - ⎜1 + n-1 ⎟y
⎝

12
⎠ ⎝ 12 n-1⎠

yn+1 = ⎛ 2 2 ⎞ (5.5)
⎜1 + h k n+1 ⎟

⎜⎝ 12 ⎟⎠
with k2 = eigenvalue of a wave equation.

Example 5.1:

Create a program to determine the static electric potential using Poisson's equation

(equation 5.2) with the following conditions:

⮚ Charge density: ρ = (1/8π)e-r 🡪 S(r) = - 4πρ = - ½r e-r

⮚ Boundary conditions: yo= φ1 = 0 and y1 = φ2 = 0.01 with φ = �Φ, Φ = potential.

⮚ Derivative formula (derivative):

φn+1 = 2φn - φn-1

h2

+
12

(Sn+1 + 10Sn + Sn-1)

⮚ Determine: the value of electric potential at r = 20

Completion:
clear
clc
f=inline('-0.5*r.*exp(-r)','r')
N=1000;
r0=0;
rm=100;
h=(rm-r0)/N;
c=(h)^2/12;
y(1)=0;
%y(2)=1-0.5*(h+2)*exp(-h);
y(2)=0.0499;
s(1)=f(0);
s(2)=f(h);
r(1)=r0;
r(2)=h;
for i=2:N

r(i+1)=(i)*h;
s(i+1)=f(r(i+1));
y(i+1)=2*y(i)-y(i-1)+c*(s(i+1)+10*s(i)+s(i-1));

end

Physics Computing Lecture Module by
Warsono

44

phi=y./r;
[r' phi']
plot(r,phi,'b','linewidth',3)
grid on

