

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF PHYSICS EDUCATION PHYSICS STUDY PROGRAM

Colombo St. Number 1 Yogyakarta 55281 Telephone (0274)565411 Ext. 217, fax (0274) 548203 Web: http://fisika.fmipa.uny.ac.id/, E-mail: fisika@uny.ac.id/

Bachelor of Physics

MODULE HANDBOOK

Module name:	Special Relativity				
Module level, if applicable:	Undegraduate				
Code:	FSK6222				
Sub-heading, if applicable:	-				
Classes, if applicable:	-				
Semester:	3 rd				
Module coordinator:	Dr. Supardi, S.Si., M.Si.				
Lecturer(s):	Dr. Supardi, S.Si., M.Si.				
Language:	Bahasa Indonesia				
Classification within the	Compulsory Course				
curriculum:					
Teaching format / class	100 minutes lectures and 120 minutes structured activities per				
hours per week during the	wook				
semester:					
	Total workload is 90 hours per semester which consists of 100				
Workload:	minutes lectures, 120 minutes structured activities, and 120				
	minutes individual study per week for 16 weeks.				
Credit points:	2 SKS (3.25 ECTS)				
Prerequisites course(s):	-				
Course Outcomes	After taking this course the students have ability to:				

	 CO1. Students are able to explain Newtonian relativity and the invariance of mechanics laws under the Galileo transformation CO2. Students are able to explain the Lorentz transformation and the resulting aspects CO3. Students are able to explain the invariance of the mechanics and electrodynamics laws to the Lorentz transformation CO4. Solve problems related to the subject. 							
Content:	This course contains important materials as part of Modern Physics, including: background on the emergence of Special Theory of Relativity, Relativistic Kinematics, relativistic dynamics, and relativity and electromagnetism							
Study / exam achievements:	Attitudeassessmentis carriedout at each meetingbyobservationand / or self-assessmenttechniquesusing theassumptionthat basically every student has a good attitude.The student is given a value of very good or not good attitude ifthey show it significantly compared to other students in general.The result of attitude assessment is not a component of the finalgrades, but as one of the requirements to pass the course.Students will pass from this course if at least have a goodattitude.The final mark will be weight as follow:NoCOAssessmentPresentation1CO2,andCo3andCo4CO4Co4co4Co4d. Final Exam20%25%							
Forms of media:	Board, LCD	Projector, Laptop/Compu	iter, online					
Literature:	 Resnick, R., 1968, Introduction to Special Relativity, New York: John Wiley & Sons. Nolting, W., 2017Theoretical Physics 4. Special Theory of Relativity, Springer Nature. MANSOURI, R and SEXL, R.U, 1976, A Test Theory of Special Relativity:II. First Order Tests, <i>General Relativity and Gravitation</i>, Vol. 8, No. 7 (1977), pp. 515- 524 Jia-An Lu, 2016, Energy, momentum and angular momentum conservations in de Sitter special relativity <i>Gen Relativ Gravit</i> (2016) 48:6 							

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8
CO1	~	~			~			
CO2	~	~			~			
CO3	~	~			~			
CO4	~	~			~			