

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF PHYSICS EDUCATION PHYSICS STUDY PROGRAM

Colombo St. Number 1 Yogyakarta 55281 Telephone (0274)565411 Ext. 217, fax (0274) 548203 Web: <u>http://fisika.fmipa.uny.ac.id/</u>, E-mail: <u>fisika@uny.ac.id</u>

Bachelor of Physics

MODULE HANDBOOK

Module name:	Fluid Mechanics				
Module level, if applicable:	Bachelor Program				
Code:	FSK6229				
Sub-heading, if applicable:	-				
Classes, if applicable:	-				
Semester:	4				
Module coordinator:	Denny Darmawan, M.Sc.				
Lecturer(s):	Denny Darmawan, M.Sc., Dr. Sukardiyono				
Language:	Bahasa Indonesia				
Classification within the					
curriculum:					
Teaching format / class	Lecture (100 minutes lectures and 120 minutes structured				
hours per week during the	activities)				
semester:					
Workload:	Total workload is around 91 hours in one semester which				
	consists of 100 minutes of lectures, 120 minutes of structured				
	activities, and120 minutes of individual study per week for 16				
	weeks.				
Credit points:	2 SKS (3.25 ECTS)				
Prerequisites course(s):	-				
Course Outcomes	Students graduating from this course will be able to:				

	CO1. Explain the basic concepts of static fluid and flowing						
	CO2. Analyze the flow of ideal fluid using Bernoulli's equation						
	CO3. Analyze the flow of fluid using control volume approach						
	CO4. Analyze the model of fluid flow using dimensional						
	analysis and similitude						
	CO5. Explain the basic concepts of open flow and flow in						
	conduits						
	This course discusses the basic concepts of fluid flow. The						
Content:	students will learn the analysis of fluid flow using Bernoulli's						
	equation and control volume approach, and also the fluid flow						
	modelling using dimensional analysis and similitude						
Study / exam achievements:	The final grade will be weighted as follow:						
	a. Case study : 20%						
	b. Group project : 30%						
	c. Midterm exam: 20%						
	d. Final exam : 30%						
Forms of media:	Board, LCD Projector, Laptop/Computer						
Reference:	1. Elger D.F., LeBret B.A., and Crowe, C.T., 2015,						
	Engineering Fluid Mechanics 11 th edition. Wilev						
	2 White F.M. 2020 Fluid Mechanics McGraw-Hill						
	2 Corbart RM & Corbart TS 2021 Munson						
	S. Geman, F.M. & Geman, T.S., 2021, Multison,						
	roung and Oklisni's Fundamental of Fluid						
	Mechanics, McGraw-Hill						

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8
CO1		✓			✓			
CO2		✓			\checkmark			
CO3		✓			✓			
CO4		✓			✓			
CO5		~			✓			