

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF PHYSICS EDUCATION

PHYSICS STUDY PROGRAM

Colombo St. Number 1 Yogyakarta 55281 Telephone (0274)565411 Ext. 217, fax (0274) 548203 Web: http://fisika.fmipa.uny.ac.id, E-mail: fisika@uny.ac.id

Bachelor of Physics

MODULE HANDBOOK

Module name:	Astronomy				
Module level, if applicable:	Bachelor Program				
Code:	FSK6273				
Sub-heading, if applicable:	-				
Classes, if applicable:	-				
Semester:	6				
Module coordinator:	Denny Darmawan, M.Sc.				
Lecturer(s):	Denny Darmawan, M.Sc., Dr. Sukardiyono				
Language:	Bahasa Indonesia				
Classification within the	Elective Course				
curriculum:					
Teaching format / class	Lecture (100 minutes lectures and 120 minutes structured				
hours per week during the	activities).				
semester:	40000000				
Workload:	Total workload is around 91 hours in one semester which				
	consists of 100 minutes of lectures, 120 minutes of structured				
	activities, and120 minutes of individual study per week for 16				
	weeks.				
Credit points:	2 SKS (3.25 ECTS)				
Prerequisites course(s):	-				
Course Outcomes	Students graduating from this course will be able to:				

	CO1. Understand the basic concepts of celestial sphere and phenomena observed on it and apply them in observation activities CO2. Understand the basic concepts of spectroscopy and radiation used in obtaining the physical information about celestial objects CO3. Understand the basic physical properties of stars (including the Sun) and their evolution					
	CO4. Understand the galactic structure and basic concepts in cosmology					
Content: Study / exam achievements:	This course discusses the basic concepts of celestial objects (stars, galaxies and universe) and the method to obtain the physical information from them. These include the concept of celestial sphere, stars and their evolution, stellar spectroscopy and radiation, galaxies and cosmology The final grade will be weighted as follow: a. Case study: 20% b. Group project: 30% c. Midterm exam: 20% d. Final exam: 30%					
Forms of media:	Board, LCD Projector, Laptop/Computer					
Reference:	 Chaisson, E. and McMillan, S., 2017, Astronomy Today 9th edition, Pearson Seeds, M.A., and Backman, D., 2018, Foundations of Astronomy, 14th edition, Cengage Learning 					

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8
CO1		✓			✓			
CO2		✓			✓			
CO3		✓			✓			
CO4		✓			✓			