

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF PHYSICS EDUCATION

PHYSICS STUDY PROGRAM

Colombo St. Number 1 Yogyakarta 55281 Telephone (0274)565411 Ext. 217, fax (0274) 548203 Web: http://fisika.fmipa.uny.ac.id, E-mail: fisika@uny.ac.id

Bachelor of Physics

MODULE HANDBOOK

Module name:	Microcontroller			
Module level, if applicable:	Bachelor Program			
Code:	FSK6341			
Sub-heading, if applicable:	-			
Classes, if applicable:	-			
Semester:	5			
Module coordinator:	Denny Darmawan, M.Sc.			
Lecturer(s):	Denny Darmawan, M.Sc., Dr. Sukardiyono			
Language:	Bahasa Indonesia			
Classification within the	Elective Course			
curriculum:				
Teaching format / class	Lecture and Labwork (100 minutes lectures,120 minutes			
hours per week during the	structured activities and 170 minutes laboratory work per			
semester:	week).			
	Total workload is 136 hours in one semester which consists of			
Workload:	100 minutes of lectures, 120 minutes of structured activities,			
	120 minutes of individual study and 170 minutes of laboratory			
	work per week for 16 weeks.			
Credit points:	3 SKS (4.86 ECTS)			
Prerequisites course(s):	-			
Course Outcomes	Students graduating from this course will be able to:			

	CO1. Explain the basic concepts of microcontroller							
	(architecture, timing system, communication bus a							
	interrupt system)							
	CO2. Master the programming of one microcontroller available							
	in the marketplace and apply it in the measureme							
	system							
	This course discusses the basic concepts of microcontroller							
Content:	(architecture, timing system, communication bus and interrupt							
	system) and how to program one of the microcontroller							
	available in the marketplace. The focus of microcontroller							
	application in this course is on physics measurement system							
	The final grade will be weighted as follow:							
	a. Case study : 20%							
Study / exam achievements:	b. Group project: 30%							
	c. Midterm exam: 20%							
	d. Final exam : 30%							
Farms of modia.	Donald LCD Designator London/Computer							
Forms of media:	Board, LCD Projector, Laptop/Computer							
Reference:	Barrett & Pack, 2006, Microcontroller Fundamentals for							
	Engineers and Scientists, Morgan & Claypool							
	Hughes, J.M., 2016. Arduino: A Technical Reference, O'Reilly							
	Banzi, M. & Shiloh, M., 2022, Getting Started with Arduino 4th							
	ed, Make Community							

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8
CO1						✓		
CO2						✓		