

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF PHYSICS EDUCATION PHYSICS STUDY PROGRAM

Colombo St. Number 1 Yogyakarta 55281 Telephone (0274)565411 Ext. 217, fax (0274) 548203 Web: <u>http://fisika.fmipa.uny.ac.id/</u>, E-mail: <u>fisika@uny.ac.id</u>

Bachelor of Physics

MODULE HANDBOOK

Module name:	Automation				
Module level, if applicable:	Bachelor Programme				
Code:	FSK6343				
Sub-heading, if applicable:	-				
Classes, if applicable:	-				
Semester:					
Module coordinator:	Agus Purwanto, M.Sc.				
Lecturer(s):	Agus Purwanto, M.Sc.				
Language:	Bahasa Indonesia				
Classification within the curriculum:	Elective Course				
Teaching format / class hours per week during the semester:	150 minutes lectures and 180 minutes structured activities per week.				
Workload:	Total workload is 136 hours per semester which consists of 150 minutes lectures, 180 minutes structured activities, and 180 minutes individual work to complete the project per week for 16 weeks.				
Credit points:	3				
Prerequisites course(s):	-				
Course Outcomes	Students completing this course would be able to:				

	1	CO1,	Individual	Presentation	40%			
1			Object	Technique				
	No	CO	Assessment	Assessment	Weight			
	The final grade will be weighted as follow:							
Study / exam achievements:	control system.							
	report and to demonstrate the performance of the realized							
	At the end of semester each student should present the final							
	should present his/her progress in every meeting of each week.							
	to realize the chosen closed loop control system. Each student							
	progress of understandings and achievements of each student							
	choice. Assessment is carried out at each meeting by observing the							
	assembly and realize one closed loop control system on his/her							
	As the end of semester Project, each student should design,							
Content:	on the physics underlying the single input single output system.							
	and the actuator and plant characteristics. Stressing is placed							
	dimension of input quantity, the characteristics of comparators,							
	conditioning components in feedback circuits to match to the							
	loop) control systems, general components of control systems (in block diagram), sensor characteristics, the need for signal							
	This course discusses the basic concepts of automatic (closed							
	Thio		ontrol system (as the en					
	CO6. Design, assembly and realize one automatic (closed							
	CO5. Characterize the actuator and plant components							
	CO4. Characterize the comparator component							
	and its feedback circuits							
	CO3. Characterize the sensor as the front end of control system							
	systems							
	CO2. Identify the generic components of the closed loop control							
	CO1. Understand the basic purpose and structure of autom (feedback) control systems							

60%						
00%						
Board, LCD Projector, Laptop/Computer						
ineers						
(Springer, 1968)						

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8
CO1		\checkmark						
CO2		✓						
CO3			✓			✓		
CO4					✓	✓		
CO5					✓	✓		
CO6						✓	✓	