

UNIVERSITAS NEGERI YOGYAKARTA FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF PHYSICS EDUCATION PHYSICS STUDY PROGRAM

Colombo St. Number 1 Yogyakarta 55281 Telephone (0274)565411 Ext. 217, fax (0274) 548203 Web: <u>http://fisika.fmipa.uny.ac.id/</u>, E-mail: <u>fisika@uny.ac.id</u>

Bachelor of Physics

MODULE HANDBOOK

Module name:	Reactor Physics			
Module level, if applicable:	Undergraduate Programme			
Code:	FSK6364			
Sub-heading, if applicable:	-			
Classes, if applicable:	-			
Semester:	5			
Module coordinator:	Dr. Rida SN Mahmudah, M.Si.			
Lecturer(s):	Dr. Rida SN Mahmudah, M.Si.			
Language:	Bahasa Indonesia			
Classification within the	Flective Course			
curriculum:				
Teaching format / class	150 minutes lectures and 180 minutes structured activities per week.			
hours per week during the				
semester:				
	Total workload is 136 hours per semester which consists of			
Workload:	150 minutes lectures, 180 minutes structured activities, and			
	180 minutes individual study per week for 16 weeks.			
Credit points:	3 sks (4.86 ECTS)			
Prerequisites course(s):	FSK6226			
Course Outcomes	Students graduating from this course will be able to:			
	CO1. Demonstrate collaborative attitude and independence in			
	carrying out individual tasks and group assignments			
	CO2. Understand the basic concept of nuclear reactor theory			
	CO3. Mastering the reactor systems and types			
	CO4. Understand the reactor design and reactor safety			

Content:	This course discusses the neutronics of thermal nuclear						
	reactors, as well as their types, design and safety aspects.						
	Attitude assessment is carried out at each meeting by						
	observing several achievements, i.e. attendance, engagement						
	in class activities, language usage and ethics. Results of these						
	observations are not being a component of the final grades, but						
	stude	ents mus	t attend at least 12 of	the 16 classes	and have		
	generally good attitude to pass the course.						
	The final grade will be weighted as follow:						
Study / exam achievements:	No	CO	Assessment	Weight			
			Object	Technique			
	1	CO2,	a. Individual	Presentation	15%		
		CO3,	Assignment	/ written test			
		and	b. Group		15%		
		CO4	Assignment				
			c. Quiz		15%		
			d. Case Study		25%		
			e. Final Exam		30%		
	Total 100%						
Forms of media:	Board, LCD Projector, Laptop/Computer						
	1. Duderstadt and Hamilton, "Nuclear Reactor Analysis",						
Literature:	John Wiley and Sons, 1976.						
	2. John R. Lamarsh, "Introduction to Nuclear Reactor						
	Physics", Addison-Wesley, 1966.						
	3. A review on the development of nuclear power reactors,						
	Mark Ho, Edward Obbard, et al., Energy Procedia (2019)						
	459–466, https://doi.org/10.1016/j.egypro.2019.02.193						
	1						

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8
CO1	~							

CO2	~				
CO3	~		~		
CO4			✓		